Palladium(0)-catalyzed direct cross-coupling reaction of allylic alcohols with aryl- and alkenylboronic acids.

نویسندگان

  • Hirokazu Tsukamoto
  • Tomomi Uchiyama
  • Takamichi Suzuki
  • Yoshinori Kondo
چکیده

Allylic alcohols can be used directly for the palladium(0)-catalyzed allylation of aryl- and alkenylboronic acids with a wide variety of functional groups. A triphenylphosphine-ligated palladium catalyst turns out to be most effective for the cross-coupling reaction and its low loading (less than 1 mol%) leads to formation of the coupling product in high yield. The Lewis acidity of the organoboron reagents and poor leaving ability (high basicity) of the hydroxyl group are essential for the cross-coupling reaction. The reaction process is atom-economical and environmentally benign, because it needs neither preparation of allyl halides and esters nor addition of stoichiometric amounts of a base. Furthermore, allylic alcohols containing another unsaturated carbon-carbon bond undergo arylative cyclization reactions leading to cyclopentane formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Palladium-catalyzed cross-coupling of α-bromocarbonyls and allylic alcohols for the synthesis of α-aryl dicarbonyl compounds† †Electronic supplementary information (ESI) available. CCDC 1042318. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc00505a

The palladium-catalyzed coupling of olefins and organohalides is a versatile approach for synthesizing complex molecules from simple starting materials. We have developed a palladium-catalyzed coupling of α-bromocarbonyl compounds with allylic alcohols for the generation of acyclic aryl-substituted dicarbonyl compounds. The reaction proceeds via a tandem olefin insertion of an α-acyl radical fo...

متن کامل

A sequential indium-mediated aldehyde allylation/palladium-catalyzed cross-coupling reaction in the synthesis of 2-deoxy-beta-C-aryl glycosides.

Indium-mediated allylation of aldehydes with 2-chloro-3-iodopropene, followed by a palladium-catalyzed cross-coupling reaction with triarylindium reagents or arylboronic acids, leads to aryl-substituted homoallylic alcohols in good to excellent yields and diastereoselectivities. The products obtained from reactions conducted with d-glyceraldehyde acetonide can be transformed into 2-deoxy-beta-C...

متن کامل

Palladium-catalyzed synthesis of N-aryl carbamates.

An efficient synthesis of aryl carbamates was achieved by introducing alcohols into the reaction of palladium-catalyzed cross-coupling of ArX (X = Cl, OTf) with sodium cyanate. The use of aryl triflates as electrophilic components in this transformation allowed for an expanded substrate scope for direct synthesis of aryl isocyanates. This methodology provides direct access to major carbamate pr...

متن کامل

Palladium-catalyzed stereospecific cross-coupling of enantioenriched allylic alcohols with boronic acids.

In the presence of 2.5 mol% Pd2(dba)3-TMEDA (1 : 4), a range of enantioenriched allylic alcohols smoothly coupled with boronic acids in a highly regioselective fashion with inversion of configuration to afford structurally diverse alkenes in good yields with perfect retention of ee.

متن کامل

Palladium-Catalyzed Allylation/Benzylation of H-Phosphinate Esters with Alcohols.

The Pd-catalyzed direct alkylation of H-phosphinic acids and hypophosphorous acid with allylic/benzylic alcohols has been described previously. Here, the extension of this methodology to H-phosphinate esters is presented. The new reaction appears general, although its scope is narrower than with the acids, and its mechanism is likely different. Various alcohols are examined in their reaction wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Organic & biomolecular chemistry

دوره 6 16  شماره 

صفحات  -

تاریخ انتشار 2008